11 oct. 2025

DS de mathématiques n°2

Calcul algébrique, sommes et produits,

trigonométrie, complexes, etc. - Corrigé

Noté sur 100 pts ± 5 pts pour le soin et la clarté, puis la note est ramené sur 20 en multipliant par 1/5

Exercice 1 : Un peu de tout!

Les questions 1) à 4) de cet exercice sont indépendantes.

1) Résoudre dans \mathbb{R} l'équation : $\left| \frac{x-1}{x+3} \right| \leq 2$.

L'équation n'a un sens que pour $x+3 \neq 0$, i.e. $x \neq -3$. En multipliant par |x+3|, qui est positif, l'équation se réécrit :

$$|x-1| \le 2|x+3|$$

x	$-\infty$ -3	-3 1	$1 + \infty$
x-1	_	_	+
x+3	_	+	+

— Si $x \in [1, +\infty[$, alors l'équation devient :

$$x - 1 \le 2(x + 3)$$

$$\iff -7 \le x$$

Dans ce cas, $S_1 = [1, +\infty[$.

— Si $x \in]-\infty, -3[$, alors l'équation se réécrit :

$$-(x-1) \le 2(-x-3)$$

$$\iff -x+1 \le -2x-6$$

$$\iff x < -7$$

Dans ce cas $S_2 =]-\infty, -7]$

— Si $x \in]-3,1[$, alors l'équation devient :

$$-(x-1) \le 2(x+3) \qquad \text{car } x+3 \ge 0$$

$$\iff 1-6 \le 2x+x$$

$$\iff -5 \le 3x$$

$$\iff x \ge -\frac{5}{3}$$

Dans ce cas,
$$S_3 = \left[-\frac{5}{3}, 1 \right[$$

Finalement,

$$\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_3 = \boxed{]-\infty, -7] \cup \left[-\frac{5}{3}, +\infty\right[}$$

Autre méthode:

$$|x-1| \le 2|x+3|$$

$$\iff |x-1|^2 \le 4|x+3|^2 \quad \text{par croissance de } x \mapsto x^2 \text{ sur } \mathbb{R}_+$$

$$\iff (x-1)^2 \le 4(x+3)^2$$

$$\iff x^2 - 2x + 1 \le 4(x^2 + 6x + 9)$$

$$\iff x^2 - 2x + 1 \le 4x^2 + 24x + 36$$

$$\iff 3x^2 + 26x + 35 \ge 0$$

Le discriminant de ce polynôme est

$$\Delta = 26^{2} - 4 \times 3 \times 35$$

$$= (2 \times 13)^{2} - 4 \times 3 \times 35$$

$$= 4 \times 13^{2} - 4 \times 3 \times 35$$

$$= 4 \times (13^{2} - 3 \times 35)$$

$$= 4 \times (169 - 105)$$

$$= 4 \times 64$$

Ainsi, le polynôme admet deux racines réelles :

$$x_{\pm} = \frac{-26 \pm \sqrt{4 \times 64}}{2 \times 3} = \frac{-26 \pm 2 \times 8}{6} = \frac{-26 \pm 16}{6}$$

On a donc $x_{-} = \frac{-42}{6} = -7$ et $x_{+} = -\frac{10}{6} = -\frac{5}{3}$. Ainsi, $3x^{2} + 26x + 35$ est positif si et seulement si $x \le -7$ ou $x \ge -\frac{5}{3}$, donc :

$$\mathcal{S} = \boxed{]-\infty, -7] \cup \left[-\frac{5}{3}, +\infty\right[}$$

/3 2) Résoudre dans \mathbb{R} l'équation : $\sqrt{x-3} = 1 - \sqrt{x}$

/1

/4

L'équation n'a un sens que si $x-3\geq 0$ et $x\geq 0$, i.e. $x\geq 3$. Par croissance de la fonction $x\mapsto \sqrt{x}$, on a alors $\sqrt{x}\geq \sqrt{3}$, de sorte que $1-\sqrt{x}<0\leq \sqrt{x-3}$, donc

$$\mathcal{S} = \boxed{\varnothing}$$

3) a) On pose pour tout $n \in \mathbb{N}^*$: $S_n = \sum_{k=1}^n k(k+1)(k+2)$. Exprimer S_{n+1} en fonction de S_n et de n.

$$S_{n+1} = \sum_{k=1}^{n} k(k+1)(k+2) + (n+1)(n+2)(n+3)$$
$$= S_n + (n+1)(n+2)(n+3)$$

b) Montrer par récurrence que : $S_n = \frac{n(n+1)(n+2)(n+3)}{4}$

 $(1.5\ pour\ la\ r\'edaction\ et\ l'initialisation\ ;\ 2.5\ pour\ l'h\'er\'edit\'e)$

On raisonne par récurrence simple.

— Pour n = 1, on a $S_1 = 1 \times (1 + 1) \times (1 + 2) = 6$ tandis que

$$\frac{n(n+1)(n+2)(n+3)}{4} = \frac{1 \times 2 \times 3 \times 4}{4} = 6$$

— Soit $n \in \mathbb{N}^*$. On suppose la propriété vraie au rang n. Montrons que

$$S_{n+1} = \frac{(n+1)(n+2)(n+3)(n+4)}{4}. \text{ On a :}$$

$$S_{n+1} = S_n + (n+1)(n+2)(n+3)$$

$$= \frac{n(n+1)(n+2)(n+3)}{4} + (n+1)(n+2)(n+3)$$

$$= (n+1)(n+2)(n+3) \times \left[\frac{n}{4} + 1\right]$$

$$= (n+1)(n+2)(n+3) \times \frac{n+4}{4}$$

Donc la propriété est vraie au rang n+1. Ainsi, la propriété est vraie pour tout $n \in \mathbb{N}^*$.

c) En déduire la valeur de $\sum_{k=1}^{n} k^3$.

/5

(1,5 pour les formules de $\sum_{k=1}^{n} k$ et $\sum_{k=1}^{n} k^2$; 3,5 pour le reste)

$$S_n = \sum_{k=1}^n k(k+1)(k+2) = \sum_{k=1}^n (k^3 + 3k^2 + 2k)$$
$$= \sum_{k=1}^n k^3 + 3\sum_{k=1}^n k^2 + 2\sum_{k=1}^n k$$

Donc

$$\sum_{k=1}^{n} k^{3} = S_{n} - 3 \sum_{k=1}^{n} k^{2} - 2 \sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(n+2)(n+3)}{4} - 3 \times \frac{n(n+1)(2n+1)}{6} - 2 \times \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{4} \times [(n+2)(n+3) - 2 \times (2n+1) - 4]$$

$$= \frac{n(n+1)}{4} \times [n^{2} + 5n + 6 - 4n - 2 - 4]$$

$$= \frac{n(n+1)}{4} \times [n^{2} + n]$$

$$= \frac{n^{2}(n+1)^{2}}{4}$$

4) Déterminer toutes les applications $f: \mathbb{N} \to \mathbb{N}$ qui vérifient f(mn) = mf(m) + nf(n) pour tous entiers naturels m et n.

(2 pour la rédaction et la mention "d'analyse-synthèse"; 4 pour l'analyse, 1 pour la synthèse)

On procède par analyse-synthèse.

— Soit f une fonction solution. Avec m = n = 0, on a

$$f(0) = 0 \times f(0) + 0 \times f(0) = 0$$

donc f(0) = 0. Avec m = 0 et $n \in \mathbb{N}^*$ quelconque, on a

$$f(0 \times n) = 0 \times f(0) + nf(n)$$

de sorte que nf(n)=0. Puisque $n\neq 0$, on a f(n)=0. Ainsi f est la fonction nulle.

— Vérifions si la fonction nulle $f:n\mapsto 0$ est effectivement solution. Pour tout $m,n\in\mathbb{N},$ on a f(mn)=0 et

$$mf(m) + nf(n) = m \times 0 + n \times 0 = 0$$

donc f est bien solution.

Finalement,

/7

/4

$$\mathcal{S} = \boxed{\{n \mapsto 0\}}$$

Exercice 2: Calculs dans $\mathbb C$

1) Soit $z \in \mathbb{C} \setminus \{-i\}$. Montrer que :

$$\left| \frac{1+iz}{1-iz} \right| = 1 \iff z \in \mathbb{R}$$

$$\begin{vmatrix} \frac{1+iz}{1-iz} \end{vmatrix} = 1 \iff \frac{1+iz}{1-iz} \times \overline{\left(\frac{1+iz}{1-iz}\right)} = 1$$

$$\iff (1+iz) \times \overline{1+iz} = (1-iz) \times \overline{1-iz}$$

$$\iff (1+iz)(1-i\overline{z}) = (1-iz)(1+i\overline{z})$$

$$\iff 1-i\overline{z}+iz+z\overline{z} = 1+i\overline{z}-iz+z\overline{z}$$

$$\iff -i\overline{z}+iz = i\overline{z}-iz$$

$$\iff z-\overline{z} = \overline{z}-z$$

$$\iff z=\overline{z}$$

$$\iff z=\overline{z}$$

$$\iff z\in\mathbb{R}$$

2) Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv \pi$ [2 π]. Montrer que :

$$i \times \frac{1 - e^{i\theta}}{1 + e^{i\theta}} = \tan\left(\frac{\theta}{2}\right)$$

(1,25 pour l'idée de l'angle moitié; 2,75 pour le calcul)

Tout d'abord, comme $\theta \not\equiv \pi$ [2 π], on a $\frac{\theta}{2} \not\equiv \frac{\pi}{2}$ [π], donc tan $\left(\frac{\theta}{2}\right)$ a un sens. De plus, $e^{i\theta} \not= -1$, donc $1 + e^{i\theta}$ a un sens également.

$$i \times \frac{1 - e^{i\theta}}{1 + e^{i\theta}} = i \times \frac{e^{i\frac{\theta}{2}} \times \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}\right)}{e^{i\frac{\theta}{2}} \times \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}\right)}$$
$$= -i \times \frac{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}}$$
$$= -i \times \frac{2i\sin\frac{\theta}{2}}{2\cos\frac{\theta}{2}}$$
$$= \left[\tan\left(\frac{\theta}{2}\right)\right]$$

/4 3) On pose $Z = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$. Déterminer les racines cubiques de Z.

/4

5/18

(2 pour $Z=e^{i\frac{2\pi}{3}}$; 2 pour les racines cubiques de Z) On remarque que

$$1 + i\sqrt{3} = 2 \times \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
$$= 2 \times \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
$$= 2e^{i\frac{\pi}{3}}$$

On en déduit aussi que (on pouvait aussi dire "par un calcul similaire"):

$$1 - i\sqrt{3} = \overline{1 + i\sqrt{3}} = \overline{2e^{i\frac{\pi}{3}}} = 2e^{-i\frac{\pi}{3}}$$

Ainsi,

$$Z = \frac{2e^{i\frac{\pi}{3}}}{2e^{-i\frac{\pi}{3}}} = e^{i\frac{2\pi}{3}}$$

On en déduit que les racines cubiques de Z sont :

$$e^{i\frac{2\pi}{9}}$$
 $e^{i\frac{2\pi}{9}}e^{i\frac{2\pi}{3}}$ $e^{i\frac{2\pi}{9}}e^{i\frac{4\pi}{3}}$

c'est-à-dire :

$$e^{i\frac{2\pi}{9}} e^{i\frac{8\pi}{9}} e^{i\frac{14\pi}{9}}$$

4) Résoudre l'équation suivante, d'inconnue $z \in \mathbb{C}$:

$$(1 - iz)^3 (1 + i\sqrt{3}) = (1 + iz)^3 (1 - i\sqrt{3})$$

/6,5

(1 pour le cas z = -i à part; 1,5 pour les trois valeurs de $\frac{1-iz}{1+iz}$; 4 pour le reste)

— Si z=i, alors $1+i\,z=0$, et l'équation devient :

$$2^3(1+i\sqrt{3}) = 0$$

ce qui est impossible. Dans ce cas, $S_1 = \emptyset$.

— Si $z \neq i$, alors l'équation devient :

$$(1 - iz)^3 (1 + i\sqrt{3}) = (1 + iz)^3 (1 - i\sqrt{3})$$

$$\iff \left(\frac{1 + iz}{1 - iz}\right)^3 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} = Z$$

Cela revient à dire que le complexe $\frac{1+iz}{1-iz}$ est une racine cubique de Z. Par la question 3), on en déduit que

$$\frac{1+iz}{1-iz} \in \left\{ e^{i\frac{2\pi}{9}}, e^{i\frac{8\pi}{9}}, e^{i\frac{14\pi}{9}} \right\}$$

Soit $\theta \in \left\{ \frac{2\pi}{9}, \frac{8\pi}{9}, \frac{14\pi}{9} \right\}$. Alors

$$\frac{1+iz}{1-iz} = e^{i\theta}$$

$$\iff 1+iz = e^{i\theta} - ie^{i\theta}z$$

$$\iff iz(1+e^{i\theta}) = e^{i\theta} - 1$$

Or, si on avait $e^{i\theta}=-1$, alors on aurait $\theta\equiv\pi$ [2 π], ce qui n'est clairement pas le cas. Ainsi, $1+e^{i\theta}\neq0$. Ainsi $1-e^{i\theta}=iz(1+e^{i\theta})$ équivaut à

$$z = \frac{1}{i} \times \frac{e^{i\theta} - 1}{1 + e^{i\theta}}$$
$$= -i \times \frac{e^{i\theta} - 1}{1 + e^{i\theta}}$$
$$= i \times \frac{1 - e^{i\theta}}{1 + e^{i\theta}}$$
$$= \tan\left(\frac{\theta}{2}\right)$$

par la question 2). Dans ce cas, $S_2 = \left\{ \tan \frac{\pi}{9}, \tan \frac{4\pi}{9}, \tan \frac{7\pi}{9} \right\}$.

Finalement

$$S = S_1 \cup S_2 = \left[\left\{ \tan \frac{\pi}{9}, \tan \frac{4\pi}{9}, \tan \frac{7\pi}{9} \right\} \right]$$

/2,5 5) Le résultat obtenu à la question 4) est-il cohérent avec celui de la question 1)?

Les solutions ont été obtenues en résolvant

$$\left(\frac{1+iz}{1-iz}\right)^3 = Z = e^{i\frac{2\pi}{3}}$$

En particulier,

$$\left| \frac{1+iz}{1-iz} \right|^3 = |Z| = 1$$

donc $\left|\frac{1+iz}{1-iz}\right|=1$. La question 1) entraine $z\in\mathbb{R}$. C'est cohérent avec ce qu'on a obtenu en résolvant l'équation, puisque l'ensemble \mathcal{S} ne contient que des réels.

Exercice-problème 3 : Sommes des cosinus carrés

On pose, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$:

$$A_n(x) = \sum_{k=0}^{n} \cos(kx)$$
 et $B_n(x) = \sum_{k=0}^{n} \cos^2(kx)$

/1,5 1) Donner la valeur de $A_n(x)$ et de $B_n(x)$ lorsque $x \equiv 0$ [2 π]

Lorsque $x \equiv 0$ [2 π], alors pour tout entier naturel k, on a $kx \equiv 0$ [2 $k\pi$] donc en particulier $kx \equiv 0$ [2 π]. On en déduit que $\cos(kx) = 1$. Ainsi,

$$A_n(x) = \sum_{k=0}^{n} 1 = \boxed{n+1}$$

$$B_n(x) = \sum_{k=0}^{n} 1^2 = \boxed{n+1}$$

- 2) À partir de cette question, on suppose que x est un réel quelconque dans \mathbb{R} et $x \not\equiv 0$ $[2\pi]$.
 - a) En justifiant, compléter la formule $\sin(a)\cos(b) = \dots$ pour $(a,b) \in \mathbb{R}^2$.

On a

/2

$$\begin{cases} \sin(a+b) = \sin a \cos b + \sin b \cos a \\ \sin(a-b) = \sin a \cos b - \sin b \cos a \end{cases}$$

En sommant ces lignes, on a:

$$\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b)$$

et donc

$$\sin(a)\cos(b) = \boxed{\frac{1}{2}\left[\sin(a+b) + \sin(a-b)\right]}$$

b) Démontrer, par récurrence, que, pour tout $n \in \mathbb{N}$,

$$\sin\left(\frac{1}{2}x\right)A_n(x) = \cos\left(\frac{n}{2}x\right)\sin\left(\frac{n+1}{2}x\right)$$

/9

 $(1,5\ pour\ la\ r\'edaction\ et\ l'initialisation\ ;\ 7,5\ pour\ le\ reste)$

On raisonne par récurrence.

— Pour
$$n = 0$$
, on a $\sin\left(\frac{1}{2}x\right)A_n(x) = \sin\left(\frac{1}{2}x\right) \times 1$. Cependant, $\cos\left(\frac{n}{2}x\right)\sin\left(\frac{n+1}{2}x\right) = \cos(0)\sin\left(\frac{1}{2}x\right) = \sin\left(\frac{1}{2}x\right)$

La propriété est donc vérifiée au rang 0.

— Soit $n \in \mathbb{N}$. On suppose la propriété vraie au rang n. Montrons-la au rang n+1.

$$\sin\left(\frac{1}{2}x\right)A_{n+1}(x) = \sin\left(\frac{1}{2}x\right)\left[A_n(x) + \cos\left((n+1)x\right)\right]$$

$$= \cos\left(\frac{nx}{2}\right)\sin\left(\frac{n+1}{2}x\right) + \sin\left(\frac{1}{2}x\right)\cos\left((n+1)x\right)$$

$$= \frac{1}{2}\left[\sin\left(\frac{nx}{2} + \frac{n+1}{2}x\right) + \sin\left(\frac{nx}{2} - \frac{n+1}{2}x\right)\right]$$

$$+ \frac{1}{2}\left[\sin\left(\frac{x}{2} + (n+1)x\right) + \sin\left(\frac{x}{2} - (n+1)x\right)\right]$$

$$= \frac{1}{2}\left[\sin\left(\left(n + \frac{1}{2}\right)x\right) + \sin\left(-\frac{1}{2}x\right)\right]$$

$$+ \frac{1}{2}\left[\sin\left(\left(n + \frac{3}{2}\right)x\right) + \sin\left(-\left(n + \frac{1}{2}\right)x\right)\right]$$

$$= -\frac{1}{2}\sin\left(\frac{1}{2}x\right) + \frac{1}{2}\sin\left(\left(n + \frac{3}{2}\right)x\right)$$

Or, inversement:

$$\cos\left(\frac{(n+1)}{2}x\right)\sin\left(\frac{(n+2)}{2}x\right) = \frac{1}{2}\left[\sin\left(\frac{(n+1)}{2}x + \frac{(n+2)}{2}x\right) + \sin\left(\frac{(n+1)}{2}x - \frac{(n+2)}{2}x\right)\right]$$

$$= \frac{1}{2}\left[\sin\left(\left(n + \frac{3}{2}\right)x\right) + \sin\left(-\frac{1}{2}x\right)\right]$$

$$= -\frac{1}{2}\sin\left(\frac{1}{2}x\right) + \frac{1}{2}\sin\left(\left(n + \frac{3}{2}\right)x\right)$$

Ainsi, la propriété est vérifiée au rang n + 1.

Finalement, la propriété est vraie pour tout $n \in \mathbb{N}$.

3) Démontrer, à l'aide d'une formule trigonométrique, que pour tout $n \in \mathbb{N}$,

$$B_n(x) = \frac{n+1}{2} + \frac{1}{2}A_n(2x)$$

/3

$$B_n(x) = \sum_{k=0}^n \cos^2(kx)$$

$$= \sum_{k=0}^n \frac{1}{2} [1 + \cos(2kx)]$$

$$= \frac{1}{2} \sum_{k=0}^n 1 + \frac{1}{2} \sum_{k=0}^n \cos(2kx)$$

$$= \frac{1}{2} (n+1) + \frac{1}{2} A_n(2x)$$

- **4)** Exprimer $A_n(x)$ en fonction de n et de x.
 - Si $x \not\equiv 0$ $[\pi]$, alors en particulier $\frac{x}{2} \not\equiv 0$ $\left[\frac{\pi}{2}\right]$, d'où $\frac{x}{2} \not\equiv 0$ $[\pi]$, ce qui permet d'affirmer que sin $\left(\frac{x}{2}\right) \not\equiv 0$. Alors, la question **b**) donne directement :

$$A_n(x) = \frac{\cos\left(\frac{n}{2}x\right)\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}$$

ce qu'on peut d'ailleurs simplifier en :

$$A_n(x) = \frac{1}{\sin\left(\frac{1}{2}x\right)} \times \frac{1}{2} \left(\sin\left(\frac{n+1}{2}x + \frac{n}{2}x\right) - \sin\left(\frac{n+1}{2}x - \frac{n}{2}x\right) \right)$$

$$= \frac{1}{\sin\left(\frac{1}{2}x\right)} \times \frac{1}{2} \left(\sin\left(\left(n + \frac{1}{2}\right)x\right) - \sin\left(\frac{1}{2}x\right) \right)$$

$$= \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{1}{2}x\right)} - \frac{1}{2}$$

— Si $x\equiv 0$ $[\pi]$, alors, puisque $x\not\equiv 0$ $[2\pi]$ par hypothèse, on a $x\equiv \pi$ $[2\pi]$, si bien que $\cos(k\pi)=(-1)^k$

$$A_n(x) = \sum_{k=0}^{n} (-1)^k = \frac{1 + (-1)^{n+1}}{1 - (-1)} = \boxed{\frac{1}{2} (1 + (-1)^{n+1})}$$

5) En distinguant les cas $x \equiv 0$ $[\pi]$ et $x \not\equiv 0$ $[\pi]$, en déduire une expression de $B_n(x)$ en fonction de n et de x.

(On est toujours dans le cas $x \not\equiv 0 \ [2\pi]$). On a vu en question 3) que

$$B_n(x) = \frac{n+1}{2} + \frac{1}{2}A_n(2x)$$

(cependant, il faut faire attention car $A_n(2x)$ n'est pas nécessairement égal à l'expression $\frac{\sin\left(\left(n+\frac{1}{2}\right)2x\right)}{2\sin\left(x\right)} - \frac{1}{2}$ car on risque de diviser par 0 si $x \equiv 0$ $[\pi]!$)

— Si $x \neq 0$ [π], alors, en posant x' = 2x, on a $x' \neq 0$ [2π]. Ceci permet d'utiliser l'expression de la question 4) pour calculer $A_n(x')$.

$$A_n(x') = A_n(2x) = \frac{\sin((n+1)x)}{\sin(x)}\cos(nx)$$

On en déduit que

$$B_n(x) = \frac{n+1}{2} + \frac{1}{2}A_n(2x)$$
$$= \left[\frac{n+1}{2} + \frac{1}{2}\frac{\sin((n+1)x)}{\sin(x)}\cos(nx)\right]$$

— Si $x \equiv 0 \ [\pi]$, alors $2x \equiv 0 \ [2\pi]$, et par la question 1), on a $A_n(2x) = n+1$. On en déduit que

$$B_n(x) = \frac{n+1}{2} + \frac{1}{2}(n+1) = \boxed{n+1}$$

- **6)** On pose $C_n(x) = \sum_{k=0}^n \cos^3(kx)$.
 - a) Montrer qu'il existe deux réels α et β qu'on déterminera tels que :

$$\forall y \in \mathbb{R}$$
 $\cos^3(y) = \alpha \cos(3y) + \beta \cos(y)$

Soit $y \in \mathbb{R}$

/3

/4

$$\cos^{3}(y) = \left(\frac{e^{iy} + e^{-iy}}{2}\right)^{3}$$

$$= \frac{1}{8} \left(e^{i3y} + 3e^{iy} + 3e^{-iy} + e^{-i3y}\right)$$

$$= \frac{1}{8} \left(2\cos(3y) + 3 \times 2\cos(y)\right)$$

$$= \left[\frac{1}{4}\cos(3y) + \frac{3}{4}\cos(y)\right]$$

Ainsi, on a la relation voulue avec $\alpha = \boxed{\frac{1}{4}}$ et $\beta = \boxed{\frac{3}{4}}$

b) En déduire une expression de $C_n(x)$ en fonction de n et de x.

Par ce qui précède :

$$C_n(x) = \sum_{k=0}^n \cos^3(kx)$$

$$= \sum_{k=0}^n \left(\frac{1}{4}\cos(3kx) + \frac{3}{4}\cos(kx)\right) \qquad (\text{avec } y = kx)$$

$$= \frac{1}{4}\sum_{k=0}^n \cos(3kx) + \frac{3}{4}\sum_{k=0}^n \cos(kx)$$

$$= \frac{1}{4}A_n(3x) + \frac{3}{4}A_n(x)$$

Or, par hypothèse, on suppose $x \not\equiv 0$ $[2\pi]$, donc on sait que $A_n(x) = \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}\cos\left(\frac{nx}{2}\right)$ par la question 4).

— Si $3x \equiv 0$ $[2\pi]$, i.e. $x \equiv 0$ $\left[\frac{2\pi}{3}\right]$, on a $A_n(3x) = n+1$ par la question 1). Ainsi:

$$C_n(x) = \boxed{\frac{1}{4} \times (n+1) + \frac{3}{4} \times \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}\cos\left(\frac{nx}{2}\right)}$$

— Si $3x \equiv 0 \ [2\pi]$, i.e. $x \not\equiv 0 \ \left\lceil \frac{2\pi}{3} \right\rceil$, on a :

$$C_n(x) == \boxed{\frac{1}{4} \times \frac{\sin\left(\frac{3}{2}(n+1)x\right)}{\sin\left(\frac{3}{2}x\right)} \cos\left(\frac{3nx}{2}\right) + \frac{3}{4} \times \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} \cos\left(\frac{nx}{2}\right)}$$

Exercice 4 : Somme liée à $e^{\frac{2i\pi}{7}}$

Soit $u = e^{\frac{2i\pi}{7}}$. On pose: $S = u + u^2 + u^4$ et $T = u^3 + u^5 + u^6$.

/2,5 1) Soit $n \in \mathbb{N}^*$ et ω une racine n-ième de l'unité. Calculer $\sum_{k=1}^n \omega^k$.

 $(0.75 \text{ pour le } cas \ \omega = 1 \text{ à part}; 1.75 \text{ pour le reste})$

— Si $\omega = 1$, alors

$$\sum_{k=1}^{n} \omega^k = \sum_{k=1}^{n} 1 = \boxed{n}$$

— Si $\omega \neq 1$, alors, puisque $\omega^n = 1$,

$$\sum_{k=1}^{n} \omega^{k} = \omega \times \frac{1 - \omega^{n}}{1 - \omega} = \omega \times \frac{1 - 1}{1 - \omega} = \boxed{0}$$

(5 2) Calculer S + T et $S \times T$.

(2,5 pour chacun)

$$S + T = u + u^{2} + u^{4} + u^{3} + u^{5} + u^{6}$$

$$= \sum_{k=1}^{6} u^{k}$$

$$= \sum_{k=1}^{7} u^{k} - u^{7}$$

Or, u est une racine 7-ième de l'unité, et $u \neq 1$, donc par la question précédente,

$$S + T = 0 - u^7 = \boxed{-1}$$

Ensuite:

$$\begin{split} S \times T &= (u + u^2 + u^4) \times (u^3 + u^5 + u^6) \\ &= u^4 + u^6 + u^7 + u^5 + u^7 + u^8 + u^7 + u^9 + u^{10} \\ &= u^4 + u^6 + 1 + u^5 + 1 + u + 1 + u^2 + u^3 \\ &= 3 + \sum_{k=1}^{6} u^k \\ &= 3 + (-1) = 2 \\ &= u \times u^3 \times (1 + u + u^3) \times (1 + u^2 + u^3) \\ &= u^4 \times \left(1 + u^2 + u^3 + u + u^3 + u^4 + u^3 + u^5 + u^6\right) \\ &= u^4 \times \left(1 + u + u^2 + 3u^3 + u^4 + u^5 + u^6\right) \end{split}$$

Or, $u + u^2 + \ldots + u^6 = -1$, donc on en déduit que :

$$S \times T = u^4 \times \left(2u^3\right) = 2u^7 = \boxed{2}$$

/6 3) En déduire les valeurs de S et de T.

Par ce qui précède

$$\begin{cases} S + T = -1 \\ S \times T = 2 \end{cases}$$

Cela revient à dire que S et T sont les racines du polynôme $z^2 + z + 2$, dont le discriminant est

$$\Delta = 1 - 8 = -7$$

Ainsi, le polynôme admet deux racines distinctes :

$$z_1 = \frac{-1 + i\sqrt{7}}{2}$$
 $z_2 = \frac{-1 - i\sqrt{7}}{2}$

On a donc deux possibilités : $(S,T)=(z_1,z_2)$ ou $(S,T)=(z_2,z_1)$. Or, on remarque que

$$\operatorname{Im} z_2 < 0 < \operatorname{Im} z_1$$

Ceci va nous permettre de déterminer si $S=z_1$ ou $S=z_2$. En effet,

$$\operatorname{Im} S = \operatorname{Im} u + \operatorname{Im} u^{2} + \operatorname{Im} u^{4}$$

$$= \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$$

$$= \sin\left(\frac{2\pi}{7}\right) + \sin\left(\pi - \frac{3\pi}{7}\right) + \sin\left(\pi + \frac{\pi}{7}\right)$$

$$= \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) - \sin\left(\frac{\pi}{7}\right)$$

Or, comme sinus est croissante sur $\left[0, \frac{\pi}{2}\right]$, on a $\sin\left(\frac{\pi}{7}\right) < \sin\left(\frac{2\pi}{7}\right)$. Ainsi, Im S > 0. On en déduit que $S = z_1$ et $T = z_2$. Ainsi :

$$S = \boxed{\frac{-1 + i\sqrt{7}}{2}} \qquad T = \boxed{\frac{-1 - i\sqrt{7}}{2}}$$

Exercice 5 : Vous en voulez encore? Voici le boss final...

Soit $n, p \in \mathbb{N}^*$. En utilisant le fait que pour tout réel x, on a $(1+x)^{n+p} = (1+x)^n(1+x)^p$, montrer que :

$$\forall k \in [0, n+p] \qquad \binom{n+p}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i}$$

/13 En déduire la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

(9 points pour la première partie; 4 points pour la seconde)

$$(1+x)^{n}(1+x)^{p} = \left(\sum_{i=0}^{n} \binom{n}{i} x^{i} 1^{n-i}\right) \left(\sum_{j=0}^{p} \binom{p}{j} x^{j} 1^{p-j}\right)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{p} \binom{n}{i} x^{i} \binom{p}{j} x^{j}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{p+i} \binom{n}{i} \binom{p}{j} x^{i+j}$$

$$= \sum_{i=0}^{n} \sum_{k=i}^{p+i} \binom{n}{i} \binom{p}{k-i} x^{k} \quad \text{avec } k = j+i$$

$$= \sum_{i=0}^{n} \sum_{k=0}^{p+n} \binom{n}{i} \binom{p}{k-i} x^{k}$$

$$= \sum_{k=0}^{n+p} \sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i} x^{k}$$

Or, on a aussi

$$(1+x)^{n+p} = \sum_{k=0}^{n+p} \binom{n+p}{k} x^k$$

et donc en identifiant les coefficients de ces deux polynômes, on trouve, pour tout $k \in [\![0,n+p]\!]$:

$$\binom{n+p}{k} = \sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i}$$

Il reste à montrer que

$$\sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i} = \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i}$$

— Si $k \geq n$, alors

$$\sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i} = \sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i} + \sum_{i=n+1}^{k} \underbrace{\binom{n}{i}}_{=0 \text{ car } i > n} \binom{p}{k-i}$$
$$= \sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i}$$

— Si k < n, alor

$$\sum_{i=0}^{n} \binom{n}{i} \binom{p}{k-i} = \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i} + \sum_{i=k+1}^{n} \binom{n}{i} \underbrace{\binom{p}{k-i}}_{=0 \text{ car } k-i<0}$$
$$= \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i}$$

Finalement, on a bien

$$\binom{n+p}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i}$$